Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nat Prod ; 87(3): 544-553, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38366995

RESUMO

Chelidonium majus, known as Greater Celandine, is a latex-bearing plant that has been leveraged for its anticancer and antimicrobial properties. Herein, C. majus aerial tissue is mined for the presence of antimicrobial peptides. A highly abundant cysteine-rich peptide with a length of 25 amino acids, deemed CM-AMP1, is characterized through multiple mass spectrometric approaches. Electron-activated dissociation is leveraged to differentiate between isoleucine and leucine residues and complement conventional collision-induced dissociation to gain full sequence coverage of the full-length peptide. CM-AMP1 shares little sequence similarity with any proteins in publicly available databases, highlighting the novelty of its cysteine landscape and core motif. The presence of three disulfide bonds in the native peptide confers proteolytic stability, and antimicrobial activity is greatly decreased upon the alkylation of the cysteine residues. Synthetic variants of CM-AMP1 are used to confirm the activity of the full-length sequence and the core motif. To assess the biological impact, E. coli was grown in a sublethal concentration of CM-AMP1 and quantitative proteomics was used to identify proteins produced by the bacteria under stress, ultimately suggesting a membrane lytic antimicrobial mechanism of action. This study integrates multiple analytical methods for molecular and biological characterization of a unique antimicrobial peptide identified from C. majus.


Assuntos
Anti-Infecciosos , Chelidonium , 60592 , Chelidonium/química , Chelidonium/metabolismo , Peptídeos Antimicrobianos , Cisteína , Escherichia coli , Anti-Infecciosos/farmacologia
2.
Brief Funct Genomics ; 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37952099

RESUMO

Herbal medicines were widely used in ancient and modern societies as remedies for human ailments. Notably, the Papaveraceae family includes well-known species, such as Papaver somniferum and Chelidonium majus, which possess medicinal properties due to their latex content. Latex-bearing plants are a rich source of diverse bioactive compounds, with applications ranging from narcotics to analgesics and relaxants. With the advent of high-throughput technologies and advancements in sequencing tools, an opportunity exists to bridge the knowledge gap between the genetic information of herbs and the regulatory networks underlying their medicinal activities. This emerging discipline, known as herbgenomics, combines genomic information with other -omics studies to unravel the genetic foundations, including essential gene functions and secondary metabolite biosynthesis pathways. Furthermore, exploring the genomes of various medicinal plants enables the utilization of modern genetic manipulation techniques, such as Clustered Regularly-Interspaced Short Palindromic Repeats (CRISPR/Cas9) or RNA interference. This technological revolution has facilitated systematic studies of model herbs, targeted breeding of medicinal plants, the establishment of gene banks and the adoption of synthetic biology approaches. In this article, we provide a comprehensive overview of the recent advances in genomic, transcriptomic, proteomic and metabolomic research on species within the Papaveraceae family. Additionally, it briefly explores the potential applications and key opportunities offered by the -omics perspective in the pharmaceutical industry and the agrobiotechnology field.

3.
Int J Mol Sci ; 24(8)2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37108086

RESUMO

A comparative analysis of the placental microbiome in pregnancies with late fetal growth restriction (FGR) was performed with normal pregnancies to assess the impact of bacteria on placental development and function. The presence of microorganisms in the placenta, amniotic fluid, fetal membranes and umbilical cord blood throughout pregnancy disproves the theory of the "sterile uterus". FGR occurs when the fetus is unable to follow a biophysically determined growth path. Bacterial infections have been linked to maternal overproduction of pro-inflammatory cytokines, as well as various short- and long-term problems. Proteomics and bioinformatics studies of placental biomass allowed the development of new diagnostic options. In this study, the microbiome of normal and FGR placentas was analyzed by LC-ESI-MS/MS mass spectrometry, and the bacteria present in both placentas were identified by analysis of a set of bacterial proteins. Thirty-six pregnant Caucasian women participated in the study, including 18 women with normal pregnancy and eutrophic fetuses (EFW > 10th percentile) and 18 women with late FGR diagnosed after 32 weeks of gestation. Based on the analysis of the proteinogram, 166 bacterial proteins were detected in the material taken from the placentas in the study group. Of these, 21 proteins had an exponentially modified protein abundance index (emPAI) value of 0 and were not included in further analysis. Of the remaining 145 proteins, 52 were also present in the material from the control group. The remaining 93 proteins were present only in the material collected from the study group. Based on the proteinogram analysis, 732 bacterial proteins were detected in the material taken from the control group. Of these, 104 proteins had an emPAI value of 0 and were not included in further analysis. Of the remaining 628 proteins, 52 were also present in the material from the study group. The remaining 576 proteins were present only in the material taken from the control group. In both groups, we considered the result of ns prot ≥ 60 as the cut-off value for the agreement of the detected protein with its theoretical counterpart. Our study found significantly higher emPAI values of proteins representative of the following bacteria: Actinopolyspora erythraea, Listeria costaricensis, E. coli, Methylobacterium, Acidobacteria bacterium, Bacteroidetes bacterium, Paenisporsarcina sp., Thiodiazotropha endol oripes and Clostridiales bacterium. On the other hand, in the control group statistically more frequently, based on proteomic data, the following were found: Flavobacterial bacterium, Aureimonas sp. and Bacillus cereus. Our study showed that placental dysbiosis may be an important factor in the etiology of FGR. The presence of numerous bacterial proteins present in the control material may indicate their protective role, while the presence of bacterial proteins detected only in the material taken from the placentas of the study group may indicate their potentially pathogenic nature. This phenomenon is probably important in the development of the immune system in early life, and the placental microbiota and its metabolites may have great potential in the screening, prevention, diagnosis and treatment of FGR.


Assuntos
Retardo do Crescimento Fetal , Placenta , Gravidez , Feminino , Humanos , Placenta/metabolismo , Retardo do Crescimento Fetal/patologia , Escherichia coli , Proteômica , Espectrometria de Massas em Tandem , Proteínas de Bactérias/metabolismo
4.
Front Plant Sci ; 13: 979678, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36388598

RESUMO

Latex-bearing plants have been in the research spotlight for the past couple of decades. Since ancient times their extracts have been used in folk medicine to treat various illnesses. Currently they serve as promising candidates for cancer treatment. Up to date there have been several in vitro and in vivo studies related to the topic of cytotoxicity and anticancer activity of extracts from latex-bearing plants towards various cell types. The number of clinical studies still remains scarce, however, over the years the number is systematically increasing. To the best of our knowledge, the scientific community is still lacking in a recent review summarizing the research on the topic of cytotoxicity and anticancer activity of latex-bearing plant extracts. Therefore, the aim of this paper is to review the current knowledge on in vitro and in vivo studies, which focus on the cytotoxicity and anticancer activities of latex-bearing plants. The vast majority of the studies are in vitro, however, the interest in this topic has resulted in the substantial growth of the number of in vivo studies, leading to a promising number of plant species whose latex can potentially be tested in clinical trials. The paper is divided into sections, each of them focuses on specific latex-bearing plant family representatives and their potential anticancer activity, which in some instances is comparable to that induced by commonly used therapeutics currently available on the market. The cytotoxic effect of the plant's crude latex, its fractions or isolated compounds, is analyzed, along with a study of cell apoptosis, chromatin condensation, DNA damage, changes in gene regulation and morphology changes, which can be observed in cell post plant extract addition. The in vivo studies go beyond the molecular level by showing significant reduction of the tumor growth and volume in animal models. Additionally, we present data regarding plant-mediated biosynthesis of nanoparticles, which is regarded as a new branch in plant latex research. It is solely based on the green-synthesis approach, which presents an interesting alternative to chemical-based nanoparticle synthesis. We have analyzed the cytotoxic effect of these particles on cells. Data regarding the cytotoxicity of such particles raises their potential to be involved in the design of novel cancer therapies, which further underlines the significance of latex-bearing plants in biotechnology. Throughout the course of this review, we concluded that plant latex is a rich source of many compounds, which can be further investigated and applied in the design of anticancer pharmaceuticals. The molecules, to which this cytotoxic effect can be attributed, include alkaloids, flavonoids, tannins, terpenoids, proteases, nucleases and many novel compounds, which still remain to be characterized. They have been studied extensively in both in vitro and in vivo studies, which provide an excellent starting point for their rapid transfer to clinical studies in the near future. The comprehensive study of molecules from latex-bearing plants can result in finding a promising alternative to several pharmaceuticals on the market and help unravel the molecular mode of action of latex-based preparations.

5.
Mol Med Rep ; 26(6)2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36263610

RESUMO

Fetal growth restriction (FGR) occurs when the fetus does not reach its genetically programmed intrauterine potential for growth and affects ~5­10% of pregnancies. This condition is one of the leading causes of perinatal mortality and morbidity associated with obstetric and neonatal complications. Placental dysfunction in FGR causes an impairment in the transfer of nutrients and oxygen from the mother to the developing fetus. Maternal adaptations to placental insufficiency may also play a role in the pathophysiology of FGR. The present study aimed to compare the proteome of the placentas of 18 women with the physiological course of pregnancy and eutrophic fetus [estimated fetal weight (EFW) >10th percentile; control group] and 18 women with late FGR (EFW <10th percentile) diagnosed after 32 weeks of pregnancy, according to the Delphi consensus (study group). The U. Mann­Whitney test was used to compare two independent groups. The R. Spearman correlation coefficient significance test was used to assess the existence of a relationship between the analyzed measurable parameters. P<0.05 was considered to indicate a statistically significant difference. The tests showed the presence of 356 different proteins which were responsible for the regulation of gene transcription control, inhibiting the activity of proteolytic enzymes, regulation of trophoblast proliferation and angiogenesis and inflammatory response. In the FGR placental proteome, other detected proteins were mostly involved in response to oxidative stress, cellular oxidation and detoxication, apoptosis, hemostatic and catabolic processes, energy transduction protein interactions, cell proliferation, differentiation and intracellular signaling. The present study used chromatographic mass­spectrometry to compare the placental proteome profiles in pregnancies complicated by late­onset FGR and normal pregnancy. Comparative analysis of proteomes from normal and FGR placentas showed significant differences. Further research is needed to clarify maternal and fetal adaptations to FGR.


Assuntos
Retardo do Crescimento Fetal , Hemostáticos , Recém-Nascido , Feminino , Gravidez , Humanos , Retardo do Crescimento Fetal/diagnóstico , Placenta/metabolismo , Proteoma/metabolismo , Peso Fetal , Oxigênio/metabolismo , Peptídeo Hidrolases , Hemostáticos/metabolismo
6.
Int J Mol Sci ; 23(16)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36012505

RESUMO

Yellow-orange latex of Chelidonium majus L. has been used in folk medicine as a therapeutic agent against warts and other visible symptoms of human papillomavirus (HPV) infections for centuries. The observed antiviral and antitumor properties of C. majus latex are often attributed to alkaloids contained therein, but recent studies indicate that latex proteins may also play an important role in its pharmacological activities. Therefore, the aim of the study was to investigate the effect of the crude C. majus latex and its protein and alkaloid-rich fractions on different stages of the HPV replication cycle. The results showed that the latex components, such as alkaloids and proteins, decrease HPV infectivity and inhibit the expression of viral oncogenes (E6, E7) on mRNA and protein levels. However, the crude latex and its fractions do not affect the stability of structural proteins in HPV pseudovirions and they do not inhibit the virus from attaching to the cell surface. In addition, the protein fraction causes increased TNFα secretion, which may indicate the induction of an inflammatory response. These findings indicate that the antiviral properties of C. majus latex arise both from alkaloids and proteins contained therein, acting on different stages of the viral replication cycle.


Assuntos
Chelidonium , Látex , Infecções por Papillomavirus , Alcaloides/farmacologia , Antivirais/farmacologia , Chelidonium/química , Humanos , Látex/química , Látex/farmacologia , Infecções por Papillomavirus/tratamento farmacológico , Proteínas de Plantas/farmacologia
7.
Int J Mol Sci ; 22(21)2021 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-34769268

RESUMO

Chelidonium majus L. is a latex-bearing plant used in traditional folk medicine to treat human papillomavirus (HPV)-caused warts, papillae, and condylomas. Its latex and extracts are rich in many low-molecular compounds and proteins, but there is little or no information on their potential interaction. We describe the isolation and identification of a novel major latex protein (CmMLP1) composed of 147 amino acids and present a model of its structure containing a conserved hydrophobic cavity with high affinity to berberine, 8-hydroxycheleritrine, and dihydroberberine. CmMLP1 and the accompanying three alkaloids were present in the eluted chromatographic fractions of latex. They decreased in vitro viability of human cervical cancer cells (HPV-negative and HPV-positive). We combined, for the first time, research on macromolecular and low-molecular-weight compounds of latex-bearing plants in contrast to other studies that investigated proteins and alkaloids separately. The observed interaction between latex protein and alkaloids may influence our knowledge on plant defense. The proposed toolbox may help in further understanding of plant disease resistance and in pharmacological research.


Assuntos
Alcaloides , Antineoplásicos Fitogênicos , Chelidonium/química , Látex/química , Extratos Vegetais/química , Proteínas de Plantas , Neoplasias do Colo do Útero/tratamento farmacológico , Alcaloides/química , Alcaloides/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Feminino , Células HeLa , Humanos , Proteínas de Plantas/química , Proteínas de Plantas/farmacologia , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia
8.
Int J Mol Sci ; 22(22)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34830309

RESUMO

Latex, a sticky emulsion produced by specialized cells called laticifers, is a crucial part of a plant's defense system against herbivory and pathogens. It consists of a broad spectrum of active compounds, which are beneficial not only for plants, but for human health as well, enough to mention the use of morphine or codeine from poppy latex. Here, we reviewed latex's general role in plant physiology and the significance of particular compounds (alkaloids and proteins) to its defense system with the example of Chelidonium majus L. from the poppy family. We further attempt to present latex chemicals used so far in medicine and then focus on functional studies of proteins and other compounds with potential pharmacological activities using modern techniques such as CRISPR/Cas9 gene editing. Despite the centuries-old tradition of using latex-bearing plants in therapies, there are still a lot of promising molecules waiting to be explored.


Assuntos
Anti-Infecciosos/química , Antineoplásicos/química , Chelidonium/metabolismo , Fatores Imunológicos/química , Látex/química , Alcaloides Opiáceos/química , Papaver/metabolismo , Compostos Fitoquímicos/química , Proteínas de Plantas/química , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Chelidonium/genética , Descoberta de Drogas/métodos , Edição de Genes/métodos , Herbivoria/efeitos dos fármacos , Humanos , Papaver/genética , Plantas Geneticamente Modificadas
9.
Int J Biol Macromol ; 189: 678-689, 2021 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-34390750

RESUMO

Thaumatin-like proteins (TLPs, osmotins) form a protein family which shares a significant sequence homology to the sweet-tasting thaumatin from the plant Thaumatococcus daniellii. TLPs are not sweet-tasting and are involved in response to biotic stresses and developmental processes. Recently it has been shown using a proteomic approach that the tuber extract from Corydalis cava (Papaveraceae) contains a TLP protein. The aim of this work was to characterize the structure and expression of TLP from C. cava tubers. The results obtained using a PCR approach with degenerate primers demonstrated a coding sequence of a novel protein, named CcTLP1. It consists of 225 aa, has a predicted molecular weight of 24.2 kDa (NCBI GenBank accession no. KJ513303) and has 16 strictly conserved cysteine residues, which form 8 disulfide bridges and stabilize the 3D structure. CcTLP1 may be classified into class IX of plant TLPs. The highest CcTLP1 expression levels were shown by qPCR in the stem of the plant compared to other organs and in the medium-size plants compared to other growth phases. The results confirm that CcTLP1 is expressed during plant growth and development until flowering, with a possible defensive function against different stress conditions.


Assuntos
Corydalis/metabolismo , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Cromatografia Líquida , Corydalis/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Funções Verossimilhança , Modelos Moleculares , Especificidade de Órgãos/genética , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Domínios Proteicos , Espectrometria de Massas em Tandem , Transcrição Gênica
10.
Arch Virol ; 165(9): 1935-1945, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32594322

RESUMO

Plants are a rich source of new antiviral, pharmacologically active agents. The naturally occurring plant alkaloid berberine (BBR) is one of the phytochemicals with a broad range of biological activity, including anticancer, anti-inflammatory and antiviral activity. BBR targets different steps in the viral life cycle and is thus a good candidate for use in novel antiviral drugs and therapies. It has been shown that BBR reduces virus replication and targets specific interactions between the virus and its host. BBR intercalates into DNA and inhibits DNA synthesis and reverse transcriptase activity. It inhibits replication of herpes simplex virus (HSV), human cytomegalovirus (HCMV), human papillomavirus (HPV), and human immunodeficiency virus (HIV). This isoquinoline alkaloid has the ability to regulate the MEK-ERK, AMPK/mTOR, and NF-κB signaling pathways, which are necessary for viral replication. Furthermore, it has been reported that BBR supports the host immune response, thus leading to viral clearance. In this short review, we focus on the most recent studies on the antiviral properties of berberine and its derivatives, which might be promising agents to be considered in future studies in the fight against the current pandemic SARS-CoV-2, the virus that causes COVID-19.


Assuntos
Antivirais/farmacologia , Berberina/farmacologia , Vírus/efeitos dos fármacos , Animais , Antivirais/química , Berberina/química , Humanos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Viroses/virologia , Replicação Viral/efeitos dos fármacos , Vírus/genética , Vírus/crescimento & desenvolvimento
11.
Postepy Biochem ; 66(4): 356-372, 2020 12 31.
Artigo em Polonês | MEDLINE | ID: mdl-33470074

RESUMO

Viruses are intracellular pathogens which utilize a number of host metabolic processes for virus replication in addition to proteins which are encoded for virus itself. Therefore, an effective antiviral drug must interfere with virus encoded proteins without affecting any cellular metabolic processes. Unfortunately, many antiviral drugs that have an inhibitory effect on virus replication, also have an inhibitory effect on molecular processes in infected, as well as uninfected, cells. There is currently no approved remedy for many viruses. Plants represent a large potential source of antiviral agents, such as: alkaloids, flavonoids, phenolic acids, phenylpropanoids, lignins, terpenoids, quinine, tannins, thiophenes, polyacetylenes or proteins. Some of them possess broad spectrum of antiviral activity.


Assuntos
Plantas , Vírus , Antivirais/farmacologia , Replicação Viral/efeitos dos fármacos
12.
Postepy Biochem ; 66(4): 336-355, 2020 12 31.
Artigo em Polonês | MEDLINE | ID: mdl-33470075

RESUMO

Oncogenic viruses (oncoviruses) are implicated in approximately 12% of all human cancers. Currently, the viruses known to cause human cancer are: Hepatitis B and C viruses (HBV and HCV), Human Papillomaviruses (HPV), Merkel Cell Polyomavirus (MCV), Human Herpesvirus-8 (HHV-8), Epstein-Barr Virus (EBV) and Human T-cell lymphotropic virus-1 (HTLV-1). However, oncoviruses are not complete carcinogens, need additional factors andisplay different roles in transformation. Oncoviruses can directly disrupt important regulatory cell genes by inserting virus genom into the DNA of the host cell. They also contain their own genes that damage the regulation of the cell. Some viruses have v-onc that cause disregulation of cellular processes and can lead to cancerous growth.


Assuntos
Neoplasias , Vírus Oncogênicos , Hepacivirus , Humanos , Retroviridae
13.
Phytomedicine ; 64: 152919, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31465980

RESUMO

BACKGROUND: It has been shown that secondary metabolites occur in Chelidonium majus L. (C. majus) crude extract and milky sap (alkaloids such as berberine, coptisine, chelidonine, chelerythrine, sanguinarine, and protopine) are biologically active compounds with a wide spectrum of pharmacological functions. Berberine, an isoquinoline alkaloid extracted from plants, possesses a wide range of biological activities, including inhibition of growth of a variety of cancer cell lines. PURPOSE AND STUDY DESIGN: In the present study, we investigated the potential anticancer effect of a protoberberine alkaloidal fraction (BBR-F) isolated from the medicinal plant C. majus on HeLa and C33A cervical cancer cells after light irradiation (PDT treatment). METHODS: BBR-F was prepared from an ethanolic extract of stems of C. majus. Identification of alkaloidal compounds was performed using high-performance liquid chromatography - mass spectrometry (HPLC/ESI-MS) and nuclear magnetic resonance (NMR) spectroscopy. BBR-F was then biologically evaluated for its anticancer properties. Cytotoxic activity after PDT treatment and without light irradiation (dark cytotoxicity) was determined by colorimetric WST-1 assay. The impact of the protoberberine alkaloidal fraction on the morphology and function of the cells was assessed by fluorescence and confocal microscopy as well as by flow cytometric analysis. To investigate the proinflammatory effect of the extracted natural BBR-F, nitric oxide concentration was determined using the Griess method. RESULTS: An effective reduction in HeLa and C33A cell viability was observed after PDT treatment of BBR-F treated cells. Furthermore, microscopic analysis identified various morphological changes in the studied cells that occurred during apoptosis. Apoptosis of HeLa and C33A cells was also characterized by biochemical changes in cell membrane composition, activation of intracellular caspases, disruption of the mitochondrial membrane potential (Δψm) and reactive oxygen species (ROS) generation. CONCLUSION: Our results strongly suggest that the components of the natural plant protoberberine fraction (BBR-F) extracted from C. majus may represent promising novel photosensitive agents and can be applied in cancer photodynamic therapy as natural photosensitizers.


Assuntos
Alcaloides/farmacologia , Apoptose/efeitos dos fármacos , Alcaloides de Berberina/farmacologia , Chelidonium/química , Fármacos Fotossensibilizantes/farmacologia , Extratos Vegetais/farmacologia , Alcaloides/química , Alcaloides/isolamento & purificação , Alcaloides de Berberina/química , Alcaloides de Berberina/isolamento & purificação , Linhagem Celular Tumoral , Humanos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/isolamento & purificação , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Caules de Planta/química , Plantas Medicinais
14.
Int J Mol Sci ; 18(11)2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29104238

RESUMO

Plants have evolved a variety of defense mechanisms to tackle virus attack. Endogenous plant proteins can function as virus suppressors. Different types of proteins mediate defense responses against plant viruses. Pathogenesis-related (PR) proteins are activated upon pathogen infections or in different stress situations and their production is one of many components in plant defense. Ribosome-inactivating proteins (RIPs) suppress translation by enzymatically damaging ribosomes and they have been found to have antiviral activity. RNA-binding proteins (RBPs) bind to target RNAs via specialized RNA-binding domain and can directly or indirectly function in plant defense system against RNA viruses. Proteins involved in silencing machinery, namely Dicer-like (DCL) proteins, Argonaute (AGO) proteins, and RNA-dependent RNA polymerases (RDRs) confer innate antiviral defense in plants as they are able to degrade foreign RNA of viral origin. This review aims to provide a comprehensive and up-to-date picture of plant proteins participating in antiviral defense. As a result we discuss proteins conferring plant antiviral resistance and their potential future applications in different fields of life including agriculture and medicine.


Assuntos
Doenças das Plantas/imunologia , Doenças das Plantas/virologia , Imunidade Vegetal , Proteínas de Plantas/imunologia , Vírus de Plantas/imunologia , Plantas/imunologia , Plantas/virologia , Peptídeos Catiônicos Antimicrobianos/imunologia , Proteínas Argonautas/imunologia , Proteínas de Ciclo Celular/imunologia , Resistência à Doença , Proteínas de Ligação a RNA/imunologia , RNA Polimerase Dependente de RNA/imunologia , Ribonuclease III/imunologia , Proteínas Inativadoras de Ribossomos/imunologia
15.
Int J Biol Macromol ; 104(Pt A): 554-563, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28619636

RESUMO

Plant non-specific lipid transfer proteins (nsLTPs) are small basic proteins, which mostly play a role in intracellular lipid transport and antimicrobial defense. Recently it was shown using shotgun proteomic approach that the whole plant extract of Chelidonium majus L. (Papaveraceae) contains relatively abundant nsLTPs. Therefore the aim of the work was to isolate and characterize nsLTP from C. majus latex. Results obtained using PCR approach with degenerate primers showed the presence of nsLTP protein in C. majus root latex, named CmLTP 9.5. The protein consists of 93 aa with a molecular weight of 9.5kDa (NCBI GenBank accession no. ALT21495, coded by KP733898). The mature form of CmLTP 9.5 has a molecular weight of 7.147kDa and contains typical eight strictly conserved cysteine residues. A 3D model of CmLTP 9.5 displays a hydrophobic cavity. The isolated protein fraction tested using diffusion method and critical dilution assay showed strong antibacterial activity towards Gram-negative Campylobacter jejuni as well as Gram-positive Listeria greyi and Clostridium perfringens. Further studies using protein expression system are required to fully understand CmLTP 9.5 mode of action.


Assuntos
Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Proteínas de Transporte/isolamento & purificação , Proteínas de Transporte/farmacologia , Chelidonium/química , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/farmacologia , Sequência de Aminoácidos , Antibacterianos/química , Bactérias/efeitos dos fármacos , Proteínas de Transporte/química , Modelos Moleculares , Filogenia , Proteínas de Plantas/química , Domínios Proteicos
16.
Curr Protein Pept Sci ; 18(8): 864-880, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28393701

RESUMO

The aim of this review is to cover most recent research on plant pathogenesis- and defenserelated proteins from latex-bearing medicinal plant Chelidonium majus (Papaveraceae) in the context of its importance for latex activity, function, pharmacological activities, and antiviral medicinal use. These results are compared with other latex-bearing plant species and recent research on proteins and chemical compounds contained in their latex. This is the first review, which clearly summarizes pathogenesisrelated (PR) protein families in latex-bearing plants pointing into their possible functions. The possible antiviral function of the latex by naming the abundant proteins present therein is also emphasized. Finally latex-borne defense system is hypothesized to constitute a novel type of preformed immediate defense response against viral, but also non-viral pathogens, and herbivores.


Assuntos
Antivirais/química , Chelidonium/química , Látex/química , Proteínas de Plantas/química , Alcaloides/química , Alcaloides/isolamento & purificação , Alcaloides/farmacologia , Antivirais/isolamento & purificação , Antivirais/farmacologia , Benzilisoquinolinas/química , Benzilisoquinolinas/isolamento & purificação , Benzilisoquinolinas/farmacologia , Catecol Oxidase/química , Catecol Oxidase/isolamento & purificação , Catecol Oxidase/farmacologia , Quitinases/química , Quitinases/isolamento & purificação , Quitinases/farmacologia , Endopeptidases/química , Endopeptidases/isolamento & purificação , Endopeptidases/farmacologia , Lipoxigenase/química , Lipoxigenase/isolamento & purificação , Lipoxigenase/farmacologia , Peroxidases/química , Peroxidases/isolamento & purificação , Peroxidases/farmacologia , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/farmacologia , Ribonucleases/química , Ribonucleases/isolamento & purificação , Ribonucleases/farmacologia , Replicação Viral/efeitos dos fármacos
17.
Plant Physiol Biochem ; 112: 312-325, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28131060

RESUMO

Chelidonium majus L. (Papaveraceae) latex is used in traditinonal folk medicine to treat papillae, warts, condylomas, which are visible effects of human papilloma virus (HPV) infections. The aim of this work was to provide new insights into the biology and medicinal use of C. majus milky sap in the flowering and fruit ripening period of the plant by comparing the protein content between samples collected on respective developmental stages using LC-MS-based label-free proteome approach. For quantification, the multiplexed LC-MS data were processed using comparative chemometric approach. Progenesis LC-MS results showed that in green fruit phase (stage IV), comparing to flowering phase (stage III) of plant development, a range of proteins with higher abundance were identified as stress- and defense-related. On the other hand at stage III very intense protein synthesis, processes of transcription, protein folding and active transport of molecules (ABC transporters) are well represented. 2-DE protein maps showed an abundant set of spots with similar MWs (about 30-35 kDa) and pIs (ca. 5.5-6.5), which were identified as major latex proteins (MLPs). Therefore we suggest that biological activity of C. majus latex could be related to its protein content, which shifts during plant development from intense biosynthetic processes (biosynthesis and transport of small molecules, like alkaloids) to plant defense mechanisms against pathogens. Further studies will help to elucidate if these defense-related and pathogenesis-related proteins, like MLP, together with small-molecule compounds, could inhibit viral infection, what could be a step to fully understand the medicinal activity of C. majus latex.


Assuntos
Chelidonium/metabolismo , Látex/metabolismo , Desenvolvimento Vegetal , Proteômica/métodos , Desoxirribonucleases/metabolismo , Eletroforese em Gel Bidimensional , Proteínas de Plantas/metabolismo , Espectrometria de Massas por Ionização por Electrospray
18.
Planta ; 244(5): 1055-1064, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27401454

RESUMO

MAIN CONCLUSION: A novel annotated Chelidonium majus L. transcriptome database composed of 23,004 unique coding sequences allowed to significantly improve the sensitivity of proteomic C. majus assessments, which showed novel defense-related proteins characteristic to its latex. To date, the composition of Chelidonium majus L. milky sap and biosynthesis of its components are poorly characterized. We, therefore, performed de novo sequencing and assembly of C. majus transcriptome using Illumina technology. Approximately, 119 Mb of raw sequence data was obtained. Assembly resulted in 107,088 contigs, with N50 of 1913 bp and N90 of 450 bp. Among 34,965 unique coding sequences (CDS), 23,004 obtained CDS database served as a basis for further proteomic analyses. The database was then used for the identification of proteins from C. majus milky sap, and whole plant extracts analyzed using liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) approach. Of about 334 different putative proteins were identified in C. majus milky sap and 1155 in C. majus whole plant extract. The quantitative comparative analysis confirmed that C. majus latex contains proteins connected with response to stress conditions and generation of precursor metabolites and energy. Notable proteins characteristic to latex include major latex protein (MLP, presumably belonging to Bet v1-like superfamily), polyphenol oxidase (PPO, which could be responsible for browning of the sap after exposure to air), and enzymes responsible for anthocyanidin, phenylpropanoid, and alkaloid biosynthesis.


Assuntos
Chelidonium/genética , Chelidonium/metabolismo , Perfilação da Expressão Gênica/métodos , Látex/metabolismo , Proteínas de Plantas/metabolismo , Proteômica/métodos , Alcaloides/metabolismo , Antioxidantes/metabolismo , Vias Biossintéticas/genética , Chelidonium/imunologia , Chelidonium/fisiologia , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Anotação de Sequência Molecular , Extratos Vegetais/metabolismo , Proteínas de Plantas/genética , Metabolismo Secundário/genética , Análise de Sequência de RNA , Estresse Fisiológico/genética , Transcriptoma/genética
19.
J Pharmacol Exp Ther ; 354(1): 32-42, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25922342

RESUMO

Efficient delivery of heterologous molecules for treatment of cells is a great challenge in modern medicine and pharmacology. Cell-penetrating peptides (CPPs) may improve efficient delivery of a wide range of macromolecular cargos, including plasmid DNA, small interfering RNA, drugs, nanoparticulate pharmaceutical carriers, and anticancer drugs. In this paper, we present the history of CPPs' discovery with special attention drawn to sequences of viral origin. We also describe different CPP families with regard to their physicochemical properties and numerous mechanisms of CPP cell uptake by direct penetration and endocytotic pathways. A detailed description is focused on formation of carrier-cargo complexes, which are needed for practical use of CPPs in medicine and biotechnology. Examples of successful application of CPPs in treatment of human diseases are also presented, including decreased tumor growth and induction of cancer cell death. Finally, we review modern design approaches to novel CPPs and prediction of their activity. To sum up, the current review presents a thorough and up-to-date knowledge of CPPs and may be a valuable source of information for researchers in pharmacology designing new therapeutic agents.


Assuntos
Peptídeos Penetradores de Células/metabolismo , Proteínas Virais/metabolismo , Animais , Antineoplásicos/administração & dosagem , Apoptose , Membrana Celular , Peptídeos Penetradores de Células/genética , Peptídeos Penetradores de Células/imunologia , Portadores de Fármacos , Vetores Genéticos , Humanos , Hipersensibilidade/imunologia , Hipersensibilidade/terapia , Imunidade Humoral , Imunidade Inata , Neoplasias/patologia , Neoplasias/terapia , Transporte Proteico , Proteínas Virais/genética , Proteínas Virais/imunologia
20.
Arch Insect Biochem Physiol ; 88(3): 192-202, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25580929

RESUMO

We determined some biochemical properties of Oulema melanopus larval gut proteases. We found adult midgut enzyme preparations yielded results similar to whole-larval preparations, permitting studies of the very small whole-larval preparations. Protein preparations were analyzed using FITC-casein as a substrate. Acidic pH is optimal for proteolytic activity (range 3.0-4.0). Cysteine protease activity increased at acidic pH and in the presence of ß-mercaptoethanol. Protease activities at all pH values were maximal at 45°C. Enzyme activity in larval preparations was inhibited by addition of Fe(2+) , Ca(2+) , Mg(2+) , Zn(2+) , and K(+) (10 mM). Fe(2+) and Zn(2+) significantly decreased enzyme activity at all pH values, Ca(2+) and Mg(2+) at pH 6.2 and Mg(2+) at pH 4.0. Inhibitors, including pepstatin A, showed the greatest inhibition at pH 4.0; phenylmethylsulfonyl fluoride, N-p-tosyl-l-phenylalanine chloromethyl ketone at pH 6.2; and phenylmethylsulfonyl fluoride, Nα -tosyl-l-lysine chloromethyl ketone hydrochloride, N-p-tosyl-l-phenylalanine chloromethyl ketone, trans-epoxysuccinyl-l-leucylamido-(4-guanidino) butane at pH of 7.6. Inhibition assays indicated that cysteine, aspartyl (cathepsin D), serine (trypsin, chymotrypsin-like) proteases and metalloproteases act in cereal leaf beetle digestion.


Assuntos
Besouros/enzimologia , Trato Gastrointestinal/enzimologia , Peptídeo Hidrolases/metabolismo , Animais , Besouros/crescimento & desenvolvimento , Concentração de Íons de Hidrogênio , Larva/enzimologia , Larva/crescimento & desenvolvimento , Metaloproteases , Peptídeo Hidrolases/isolamento & purificação , Inibidores de Proteases/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...